Effect of CeO₂ Promoter on the Performance of Catalyst for CH₄, CO₂ with O₂ to Synthesis Gas

Li Yong FU*, Qun Biao WANG, Shao Jie LU, Wei Guo XIE, Fa Li QIU

The key Laboratory of Natural Gas Chemistry Chengdu Institute of Organic Chemistry, The Chinese Academy of Sciences, Chengdu 610041

Abstract: In the reaction of methane, carbon dioxide with oxygen to synthesis gas, conversion of CH_4 was increased, but CO selectivity was reduced when CeO_2 was added to $Ni/CaO-Al_2O_3$ catalyst. The characterization of TPR, XPS, XRD and H_2 -TPD exhibited that, on one hand, the CeO_2 promoter decreased the reduction temperature of catalyst. On the other hand, addition of CeO_2 resulted in an increase in the electron density of active component Ni, and as a result, reduced the ability of CH_4 deep cracking and enhanced the resistance to carbon-deposition of catalyst. In addition, the existence of CeO_2 was beneficial to decrease the Ni crystal particle size.

Keywords: Methane, carbon dioxide, oxygen, synthesis gas.

In recent years, the reaction of methane, carbon dioxide with oxygen to synthesis gas has been receiving more attention from the viewpoint of preserving global environment, because CH_4 and CO_2 are of greenhouse gases and their contribution to global warming is very large owing to their huge amount released in the atmosphere¹. In addition, there are two advantages in this process obviously, by changing the ratio of feed, it can achieve thermal neutralizing and the CO/H_2 ratio can be varied in the range of 0.5~1 to fit different industrial requirement. There are hardly any papers to explore the influence of CeO_2 promoter on the catalytic behavior for this reaction.

In this paper, Ni/CaO-Al2O3 catalyst was modified by CeO2 promoter. A series of methods including TPR, H2-TPD, XPS and XRD was applied in order to study the effect of promoter on reducibility, resistance to carbon deposition, Ni binding energy and Ni crystal particle size of the catalyst.

The catalyst was prepared by adding CeO₂ (15mol%) to Ni (10wt%) /CaO-Al₂O₃ catalyst. The evaluation of catalysts was carried out using a fixed-bed micro-reactor with a Gas chromatograph equipped with thermal conductivity detector. CH₄/CO₂/O₂=1/0.4/0.5 molar ratio, CH₄ space velocity of 25000h⁻¹. H₂-TPR, H₂-TPD were performed at the rate of 15°C/min. X-ray diffraction (XRD) was studied on D/max-B x-ray diffractormeter with CuK α radiation at 40KV × 30mA. XPS measurements were taken on a NP-1 instrument with MgK α source at 15KV×8mA.

Li Yong FU et al.

Results and discussion

1 Effect of CeO₂ on activity and selectivity of catalyst

From the results of **table 1**, it is surprisingly found that addition of CeO₂ to Ni/CaO-Al₂O₃ affected the performance of catalyst remarkably. There was a greater increase in the conversion of CH₄, especially below 750 °C. On the contrary, addition of CeO₂ resulted in a decrease in CO selectivity in a certain degree.

Table 1 Effect of CeO₂ on catalytic activity and selectivity

Rea	ction temperature (°C)	800	750	700	650
C (CH ₄)	Ni/CaO-CeO ₂ -Al ₂ O ₃	91.15	86.33	74.70	66.49
(%)	Ni/CaO-Al ₂ O ₃	90.37	81.31	64.88	43.25
S (CO)	Ni/CaO-CeO ₂ -Al ₂ O ₃	71.19	68.82	72.16	77.11
(%)	Ni/CaO-Al ₂ O ₃	72.16	74.89	78.44	87.20

2 Effect of CeO₂ on reducibility of catalyst

TPR results listed in table 2 indicated that addition of CeO_2 decreased the reduction temperature of NiO crystal phase and NiAl₂O₄ spinel phase, namely, increased the reducibility of NiO crystal phase and NiAl₂O₄ spinel. In addition, existence of CeO₂ promoted the amount of reducible NiO as compared with that of NiO/CaO-Al₂O₃. It is easily explained that introduction of CeO₂ weakens the interaction between NiO and Al₂O₃ support.

 Table 2
 Effect of CeO2 on reducibility of catalyst

Catalyst	Reduction temperature ($^{\circ}$ C)		Peak area of NiO	Peak area of
Catalyst	NiO	NiAl ₂ O ₄	(cm^2)	$NiAl_2O_4$ (cm ²)
Ni/CaO-Al ₂ O ₃	420	870	13.5	7.7
Ni/CaO-CeO ₂ -Al ₂ O ₃	350	830	15.2	6.0

3 Effect of CeO₂ on resistance to Ni-Al composite oxides

After the catalysts with and without CeO_2 were calcined at 900°C for 2 h, as compared with both TPR results in **Table 3**, one could observe plainly that the intensity of NiO crystal phase reduction peak was weakened due to the formation of NiAl₂O₄ spinel for the latter catalyst. But by adding CeO₂, it prevented the formation of NiAl₂O₄ spinel effectively, namely, promoted the ability of resistance to Ni-Al composite oxides.

Table 3 Influence of CeO₂ on resistance to Ni-Al composite oxides

Catalyst	Treatment condition	Peak area of NiO(cm ²)	Peak area of NiAl ₂ O ₄ (cm ²)
	Fresh	15.2	6.0
$N_1O/CaO-CeO_2-AI_2O_3$	Calcined	8.0	13.3
NO/CO ALO	Fresh	13.5	7.7
NIO/CaO-Al ₂ O ₃	Calcined	3.6	17.6

Effect of CeO2 Promoter on the Catalyst for CH4, CO2 with O2 to Synthesis Gas

4 Effect of CeO₂ on resistance to carbon deposition

Table 4 showed the amount of carbon deposited on Ni/CaO-Al₂O₃ and Ni/CaO-CeO₂-Al₂O₃ catalysts for reaction of 3 h. After addition of CeO₂, the amount of carbon deposition reduced from 0.8×10^{-3} g/g to 0.5×10^{-3} g/g, therefore, it is evident that existence of CeO₂ enhances the resistance to carbon deposition of the catalyst.

catalyst	C _{CH4} (%)	S _{CO} (%)	Amount of carbon deposition (g/g)
NiO/CaO-Al ₂ O ₃ -CeO ₂	86.3	68.82	0.5×10^{-3}
$NiO/CaO Al_{2}O_{2}$	81.3	7/ 89	0.8×10^{-3}

 Table 4
 The amount of carbon deposition on catalysts*

* Reaction conditions: CH₄:CO₂:O₂=1:0.4:0.5, CH₄ GHSV 2500h⁻¹, 750 °C.

$5 H_2$ -TPD

Figure 1 presented the H₂-TPD profiles of Ni/CaO-Al₂O₃ and Ni/CaO-CeO₂-Al₂O₃ catalysts. TPD results demonstrated that addition of CeO₂ changed the shape and intensity of desorption peaks, Ni/CaO-Al₂O₃ catalyst had two desorption peaks, in contrast, Ni/CaO-CeO₂-Al₂O₃ catalyst had only one, but the total peak area was 1.33 times that of Ni/CaO-Al₂O₃ catalyst, which implied that it raised the dispersion of Ni on catalyst.

Figure. 1 H2-TPD profiles of catalysts

6 XPS and XRD investigations

From the results of XPS, it was found that, adding CeO_2 altered the Ni(2p1/2) binding energy from 852.72 eV to 852.47 eV, that is to say, increased the d-orbital electron density of active component Ni, and as a result, suppressed CH₄ deep cracking and CO disproportion to form carbon, therefore, enhanced the resistance to carbon deposition, it is in agreement with the results of **Table 4**.

XRD results displayed that addition of CeO_2 weakened the Ni diffraction intensity of catalyst, and the Ni crystal particle size was reduced from 45 nm to 31.3 nm, which

Li Yong FU et al.

was also responsible for the higher resistance to carbon deposition of Ni/CaO-CeO₂-Al₂O₃ catalyst. It is obvious that addition of CeO₂ favor the dispersion of active component Ni, which is in accordance with the results of H₂-TPD.

Reference

1. T. Horiuchio, K. Sakuma, T. Fukui, Applied Catalysis, 1996, 144, 111.

Received 11 June 1999